The Impact of Metabolic Syndrome on Air Pollution (PM2.5)-related Atherogenesis in Modernizing China: A Report from CATHAY Study

Woo KS¹, Kwok CY Timothy¹, Wong MK¹, Chu PY¹, Chook P¹, Hu YJ², Yin YH³, Lee PWA¹, Celermajer DS⁴

¹Department of Medicine & Therapeutics, The Chinese University of Hong Kong.
²Nineth Peoples' Hospital of Chongqing, China.
³Second Hospital of Chongqing Medical University, China.
⁴Department of Cardiology, The University of Sydney, Australia.

* Declaration of conflict of Interest: None

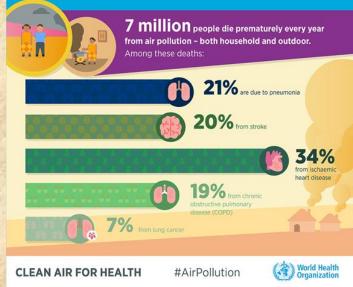
Background

Cardiovascular disease (CVD) is the leading cause of mortality worldwide.

Sex,

Ethnicity

Family history


In 2015, 422.7 million cases of CVD 17.9 million CVD deaths

A number of traditional risk factors: Modifiable: **Unmodifiable:**

Smoking

- Age Physical inactivity •
- Unhealthy diet
- Hypertension
- Obesity
- Abnormal lipids profile •
- Diabetes
- Socioeconomic status

DEATHS LINKED TO OUTDOOR AND HOUSEHOLD AIR POLLUTION

In addition to the traditional • risk factors, there is emerging evidence showing that air pollution and **Metabolic Syndrome are** novel risk factors.

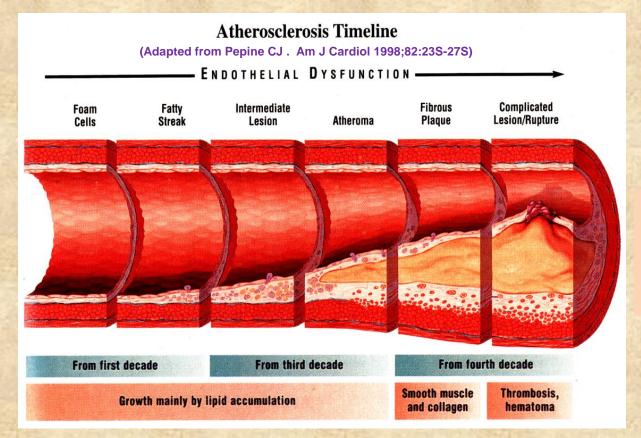
Metabolic Syndrome (IDF Criteria)

Prevalence: USA 32% - 41.4% Other western countries: 22-43.3%

 MS is associated with Insulin resistance DM, Stroke & CVS

Prevalence in China: 5.3% - 15% Report from CATHAY Study

- Higher in male vs female & Urban vs Rural
- Farmer 17.2%, Ex-farmer 43.2%
- Worse atherosclerotic surrogates: Higher Carotid IMT in Ex-farmer (0.71±0.16mm) vs Farming residents (0.64±0.11mm)

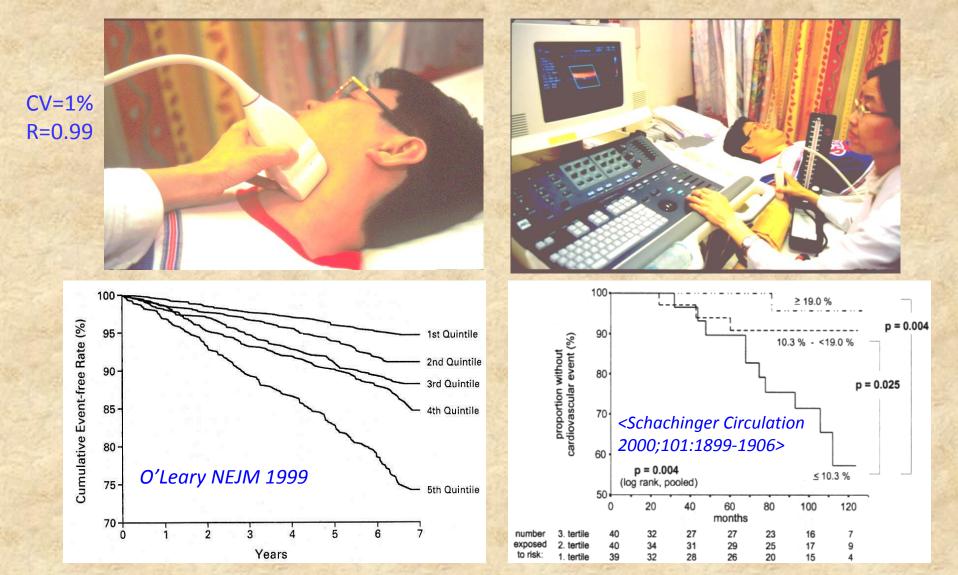

Air Pollution (PM2.5) on Atherogenesis in China

	Charles and a second second	a sa la sa da sa	See 12 and a second second	Sea fall a land a second
		Lowest AP	Тор АР	P-Values
		Tertile	Tertile	(Bonferroni
		(N=552)	(N=552)	adjusted)
and	Smokers (%)	8%	28%	<0.0001
	PM _{2.5} (µg/m3)	42.9±4.9	83.8±9.7	<0.001
	SBP (mmHg)	119.1±17.8	123.4±16.5	<0.001
	DBP (mmHg)	75.2±10.2	79.6±10.8	<0.001
(LDL-C (mmol/l)	3.2±1.0	2.5±0.8	<0.001
	TG (mmol/l)	1.19±0.76	1.50±1.50	<0.001
	FMD (%)	8.7±0.6	7.76±0.5	<0.0001
	Carotid IMT (mm)	0.63±0.15	0.68±0.13	<0.0001

PM2.5, smoking, BP, LDL-C, TG, FMD and IMT are significantly different between the 2 tertiles

Air Pollution & Metabolic Syndrome Interaction on Atherogenesis

 To establish the impact of MS on AP-related atherogenesis as a potential surrogate marker for atherosclerosis (coronary artery disease and stroke) prevention

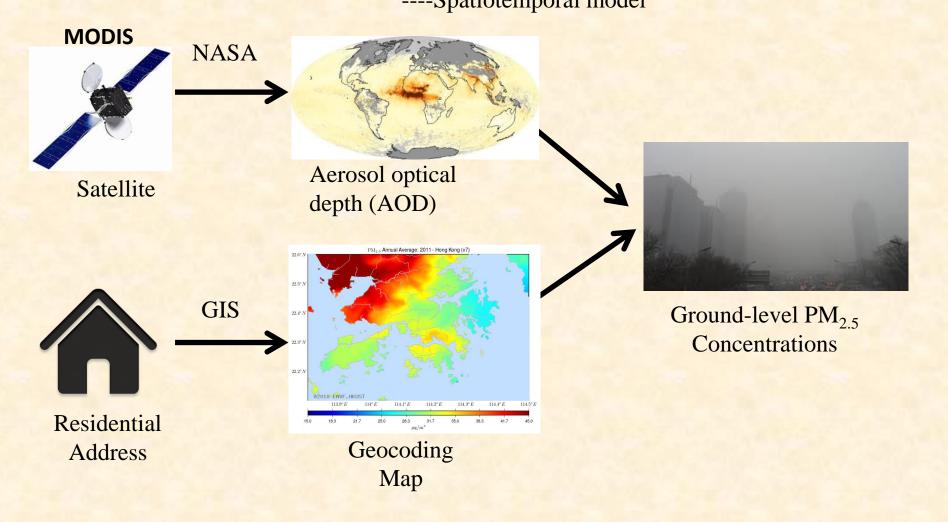

Plaque Burden

Methods – 1

- CATHAY Study (Chinese Atherosclerosis in the Aged and Young)
- 1557 Chinese (Han) adults (aged 46.0+11.2 yr, male 47%) were studied in:
 - Hong Kong (150) Macau (209)
 - Pan Yu (168) Yu County (coal mine in Shanxi, 367)
 - 3-gorges Territories (Yangtze River Dam Territories, 663)
- CV Risk Profiles: smoking, BMI, WHR, SBP, DBP, LDL-C, TG, fasting glucose
- Brachial Flow-mediated dilation (vascular reactivity) and Carotid IMT measured by ultrasound
- Metabolic Syndrome by IDF criteria
- Multivariate regression analyses performed

Surrogate Markers of Atherosclerosis

Flow-mediated dilation of brachial artery (FMD) and carotid intima-media thickness (IMT) as surrogate atherogsclerosis markers were measured by high resolution B-mode ultrasound at baseline, 6 months and 12 months.



Definition of Metabolic Syndrome*

Factors	NCEP-ATP (III)	WHO	IDF Asian
Central obesity Male Female	102cm (40") 88cm (34.6")	> 90cm (35.4") > 85cm (33.5")	> 90cm (35.4") > 80cm (31.5")
Low HDL-C Male Female	< 1.03 mmol/L < 1.3 mmol/L	< 1.03 mmol/L < 1.3 mmol/L	< 1.03 mmol/L < 1.29 mmol/L
High TG	<u>></u> 1.7 mmol/L	≥1.7 mmol/L	<u>></u> 1.7 mmol/L
High fasting glucose	<u>></u> 6.1 mmol/L	<u>></u> 6.1 mmol/L	<u>></u> 5.6 mmol/L
Hypertension	<u>></u> 140/85 mmHg	≥130/85 mmHg	≥130/85 mmHg
* MS:> 3 Factors			

Methods-2 PM_{2.5} Air Pollution Exposure

----Spatiotemporal model

NASA: US National Aeronautics and Space Administration; GIS: Geographic Information System.

Mean Yearly Air Pollution (PM2.5) Exposure

Year	County-City	Locations	PM2.5 (µg/m ³)
1996-2002	Hong Kong	Southern China	34.0-36.2
1998-2001	Macau	Southern China	42.6
1996-1997	Pan Yu	Southern China	53.6
		(Near Guangzhou)	
2000-2003	Yu County	Shanxi (coalmine)	70.3-73.0
2005-2007	Wu Shan	3 gorges territories	72.2-86.9
2006	Da Cheong	3 gorges territories	93.8
2007	Fu Ling	3 gorges territories	48.1
2007	Kai County	3 gorges territories	47.9

CATHAY – Impact of MS on IMT/ FMD

	MS Cohort (N=340) 21.8%	MS negative Cohort (N=1217)	P-Values (Bonferroni adjustment)
PM _{2.5} (μg/m3)	65.6±17.2	61.5±18.9	0.95
Age (yrs)	51.0±9.7	46.1±12.9	0.04
Male (%)	46.2	48.1	0.90
Smoking (%)	26.7	26.4	0.99
SBP (mmHg)	134.6±17.1	118.8±15.8	<0.001
DBP (mmHg)	86.1±9.7	76.4±10.0	<0.001
Waist (cm)	87.1±8.6	76.1±8.4	0.03
LDL-C (mmol/l)	2.9±1.0	2.8±1.0	0.062
TG (mmol/l)	2.1±1.6	1.1±0.8	<0.001
HDL-C (mmol/l)	1.01±0.21	1.27±0.35	<0.001
Glucose (mmol/l)	6.0 ±1.3	5.3±0.9	<0.001
Brachial FMD (%)	7.3±2.0	8.1±2.6	<0.0001
Carotid IMT (mm)	0.7±0.13	0.63±0.14	<0.0001

Multiple Regression Analysis of AP and MS Impact

Risk Factors	Beta-Value	P-value
PM2.5	0.422	<0.001
Metabolic Syndrome	0.103	<0.0001
Male gender	0.228	<0.0001
Age	0.188	<0.0001
BMI	0.066	0.013
LDL-C	0.102	<0.0001
Smoking Status	0.052	0.058
Location 1_2_3_4	0.51	0.002

Model R²=0.443, F-value=98.9, P-value<0.0001

Multivariate Regression Analysis of MS on Carotid IMT

	MS Cohort*		MS negative Cohort**	
Risk Factors	Beta-Value	P-value	Beta-Value	P-value
Male gender	0.210	0.004	0.075	0.05
Age	0.247	<0.0001	0.446	<0.0001
SBP	0.393	<0.0001	0.209	<0.0001
DBP	0.215	0.035	-0.087	0.082
Smoking	0.069	0.295	0.03	0.410
ВМІ	0.003	0.959	0.006	0.860
WHR	0.093	0.156	0.079	0.028
Blood Glucose	0.007	0.910	0.040	0.201
LDL-C	0.154	0.019	0.093	0.007
Blood Triglycerides	0.380	0.001	-0.031	0.329
PM2.5	0.380	<0.001	0.34	<0.0001
Locations 1_2_3_4	0.130	0.241	0.082	0.216

*R2=0.223, F value=14.8, p<0.001 **R2=0.469, F value 131.6, p<0.001

CONCLUSION: Both AP and MS have independent impact on atherogenic process in China, with implication in atherosclerosis prevention.

Practical Strategies to Combat AP & MS –related Atherosclerosis in Modernizing China

Health Education/ Counselling

- Less CHO balanced diet (Cooking and Ingredients)
- Active lifestyles physical activities
- CVS risk factors and management

Air Pollution Intervention

- Country & global wide policies on AP
- Personalized strategies Air filtering devices
- Facial masks or anti-inflammatory medicines (Montelukast)

Research Collaborators --- CATHAY Project

CUHK KS Woo P Chook **M** Qiao **JE Sanderson** Jean LF Woo **CWK Lam N** Thomas **SLY Xu Alice Cheung Lindy Chan C** Metreweli YK Chan **TWC Yip SK Kwong**

China **ZJ Mai** WK Lai **JZ** Feng **ZS Zhang** LS Liu JX Xie **XH Zhang DS Guo GG Wang XS Huang** The Royal Prince Alfred Hospital DS Celermajer JTC Robinson S McMahom JA McCrohon MR Adams B Bailey

Thank

011

USA SW Chan E Keung